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ABSTRACT

A recent measurement campaign at Vandenberg Air Force Base involved taking simultaneous observations with a VHF
radar and high-data-rate (I-micron diameter) platinum wires to sense optical turbulence (from temperature fluctuations).
The radar observations produce profiles of the refractive index structure parameter (C; ), the turbulent kinetic energy
(a} ), the eddy dissipation rate (E), the inner scale (I,,), the outer scale (L" ) ofturbulence, and wind speed and
direction to an altitude of20 km AGL. The fine wire measurements were taken from the surface with several sensors
mounted on a balloon-ring platform sampling in excess of3 kHz to balloon burst altitudes (typically above 25 km
AGL). The main objectives ofthis effort are to compare the two measurement techniques and to obtain observations
that can address several fundamental turbulence issues oftbe real turbulent atmosphere related to laser beam
propagation. To date, modeling and simulation of laser beam propagation through atmospheric turbulence have relied
upon a traditional theoretical basis that assumes the existence of homogeneous, isotropic, stationary, and Kolmogorov
turbulence. Results presented from the radar observations include C; , U,2 ,E, 10 ,and the standard deviation of
vertical velocity (uw)' A comparison ofthe profiles of C; obtained from the two measurement techniques is shown
and discussed. A time series of temperature data obtained from a fine wire probe traversing one radar range gate is
presented and discussed. Future measurement and analysis efforts are presented.

Key Words: Optical Turbulence, Refractive Index Structure Parameter, Inner Scale, Outer Scale, Eddy Dissipation
Rate, Meteorological Parameters, Balloon-Ring Platform.
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1. INTRODUCTION

The intensity of turbulence on scales that fall within the inertial subrange is of importance to the laser propagation and
imaging communities. With advances in tracking, pointing, and compensation of laser beams over the past several
years, new requirements have been established for improving our knowledge of optical turbulence over the propagation
paths. This has stimulated the development of new methodologies to sense the refractive index structure parameter
(C;) and derived parameters such as the transverse coherence length (ro), the isoplanatic angle (00 ), and the Rytov
variance ( a:). Furthermore, preliminary results show that assumptions of "classical theory" (homogeneous, isotropic,
stationary, and Kolmogorov turbulence) are often violated. Detailed observations of these turbulent characteristics
including inner and outer scale effects coupled with appropriate beam calculations are required to properly assess the
impact of a real atmosphere on beam propagation. These results will then be incorporated into various models. The
approach using radar and fine wire measurements as described in this paper are required to address these problems.

The use of radar systems has provided great understanding of the physics of atmospheric turbulence and related
turbulence issues. A nearly six-year continuous data set observed with a 50-MHz radar at White Sands Missile Range
(WSMR) was used to examine slant path optical turbulence conditions (transverse coherence length, isoplanatic angle,
and Rytov variance), I examine persistent layers ofenhanced C; in the lower stratosphere,2estimate the inner and outer
scales of turbulence,3 study gravity waves and turbulence near thunderstorms,4 investigate the seasonal variation of
gravity wave activity at WSMR,s and study the coupling of gravity waves and turbulence.6 Other MST radar studies
relevant to this paper include examining the winds and turbulence at WSMR,7 estimating the eddy dissipation rates,S
estimating diffusion coefficients,9 examining the turbulent effects during the passage of a cyclone,1O examining the
onset of the summer monsoon,lI defining the seasonal variability of turbulence parameters,'2 examining quasi­
monochromatic inertia-gravity waves in the lower stratosphere,13 and examining the relationship between refractivity
intensity and synoptic-scale vorticity.14 A FMCW radar has ultra sensitivity for sensing turbulence in the planetary
boundary layer and senses at high resolution (-2-m range and 12 s for obtaining each profile).ls

Other Air Force Research Laboratory turbulence measurement programs included aircraft and scintillometer
observations,16 combined aircraft and radar observations,17 turbulence measurements using a kite and tethered blimp
platform,ISand measurements in complex terrain using an ensemble of sensors (scintillometer, differential image motion
monitor, sodar, and tower-mounted fine wire sensors).'9 Similar fine wire probe systems were used on the aircraft,
kite/tethered blimp experiments, and on the tower. This design was modified for the fine wire systems as described in
this paper for use on the balloon-ring platform.

2. THEORETICAL BACKGROUND

Generally beam calculations are performed assuming "classical" turbulent conditions (Kolmogorov, stationary,
isotropic, and homogeneous) and a Gaussian beam shape. Most measurements of C; and derived quantities such as
ro and 0tl also rely on the same "classical" assumptions. Actual measurements to examine if these assumptions are
violated are necessary. The measured results then should be used in beam calculations and compared to beam
calculations assuming the "classical" conditions. This will allow the determination of the effects of non-Kolmogorov,
non-stationary, anisotropic, and non-homogeneous turbulence conditions found in real atmospheres on laser beams. A
practical approach involves using the Mutual Coherence Function since this is convenient to vary parameters of interest.
For example, different spectra can be used and ultimately results can be easily compared. Three spectra of interest are
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3) the Andrews spectrum

where: K m = S.92/ f 0

(3)

As shown above in equation I, the Kolmogorov spectrum assumes that there are zero inner scales and infinite outer
scales of turbulence. The von Karman spectrum (equation 2) accounts for both scales while the Andrews spectrum
(equation 3) additionally allows for incorporating the actual shape of the inner scale. Such comparisons are easily done
using the Mutual Coherence Function approach.
VanZandt et a1.20 addressed the problem regarding radar observations concerning C; and & and they presented the
relationship:

(

2 J3/2-2 N -2
& = YCn FI/3 M (4)

where y is a "cons~t," Cn
2

is the mear refractive index structure parameter for the radar volume, N is the Brunt
Vaisala frequency lN 2 = g(o Ine/OZ) where z is the height and e is the potential temperature, F represents the
fraction ofthe radar volume which is filled by turbulence, and M is the gradient of the generalized potential index. Mis
given as:

M=-77.6xlO-6 p(olne)X[l+ lS,SOOq(l_! olnq/oz)] (5)
T OZ T 2 0 Ine/oz

where q is the specific humidity, p is pressure in millibars, and T is temperature in degrees Kelvin.

When considering "optical" turbulence, the humidity contribution as shown in equation 5 is not applicable and the term
in square brackets tends to unity. Also in the "dry" atmosphere as found in the upper troposphere and stratosphere, the
radio and optical refractivity turbulence are identical. When considering the relationship of & and optical C; from
point measurements such as using fine wire probes, the ambient temperature and ~adient of potential temperature must
be known as shown in equation 5 after disregarding the humidity effects. C; is related to the potential energy
contained in the turbulence while & is a measure of the kinetic energy. Therefore, with an atmosphere near adiabatic
(constant potential temperature with altitude), C; will be small but the kinetic energy as described by I': can have a
wide range of values.

Another issue is the interpretation of optical measurements taken over long atmospheric paths to derive desired optical
turbulent parameters. The C; and inner scale are known to vary along the path and this effect on estimating
parameters such as the integrated turbulent values from scintillometers, pupil plane imagers, and wave front sensors
needs to be studied.

..\iW&${ .. ,. =166.( w.t.tJ ;ggWittt.tJ J . ( ,ttz ...Hi.\, . .teeM Jiii.«Wi Q.'!.C... 3.' (4.$iZ%.QiQQ; U «ww



3. METHODOLOGY

Turbulence measurements to investigate the stated scientific goals were taken using a 50 MHz radar and fine wire
probes mounted on a balloon-ring platform launched near the radar. Salient features of these systems are described in
the next section. Temperature data were measured on the balloon-ring platform with fine wire probes at various
separations on a boom. A low level fog layer (approximately 200 m thick) existed at the time of launch. Although all
probes functioned at the beginning of the flight, only one survived above about II km altitude. It is noteworthy that the
I-micron diameter wire probes were able to survive through the fog layer. The data were received by telemetry at the
ground at the sampling rate (typically 3.0 kHz). The results of calculations of power spectral densities (PSDs) and
structure functions for the observations of each probe display if certain atmospheric conditions produce non­
Kolmogorov turbulence. Results using the various horizontal separations and vertical measurements due to the ascent
of the sensors show if the atmosphere is truly isotropic for the scales of interest. The temperature structure parameter
(C;) values are found from the fine wire temperature measurements and calculated by the spectral method. The low
frequency "roll-off' from the -5/3 power law is used t9 ident~}he outer scale while the inner scale is evaluated using
the radar observations from the relationship f 0 =7.4\V 3 / e) where v is the kinematic viscosity of air and & is the
eddy dissipation rate. Spatial frequency is found by invoking Taylor's hypothesis using the local wind speed, defined
by the rjse rate of thj2 balloon-ring platform. Values of C; are found by the relationship
C,; =C; \79P / T 2Xl 0-6 using temperature (OK) and pressure (mb) appropriate observations from local sensors.

4. INSTRUMENTATION CHARACTERISTICS AND OBSERVING SITE

A thorough rationale for developing the balloon-ring platform system is described in a companion paper in this
conference21 and comparisons of optical propagation statistics from the fine wire measurements to an accepted profile is
documented also in this conference.22 Therefore only a few salient features are described here for the convenience of the
reader. Balloon wakes that contaminate measurements taken from sensors behind an ascending balloon have been
documented by Tiefenau and Gebbeken23 and for constant-level balloons.24 A new platform was designed to examine
balloon wake effects using a large "ring" so that sensors mounted facing upwards on the ring will be uncontaminated by
the balloon wake. A photograph of the balloon-ring design is shown in Figure I. The "ring" is an inflatable
polyethylene tube with a pressure relief valve. The "ring" is actually 8-sided with a diameter of about 30 feet and trails
the balloon using several risers. The balloon wake passes through the center of the "ring" leaving the measurements
uncontaminated. This system was used at Holloman AFB and Vandenberg AFB with several tungsten fine wire (I ~m
diameter) sensors to measure high-speed turbulent fluctuations. The sensors are mounted on a 3m long boom with
positions of Om, 0.25m, 1.0m, 1.5m, and 3.0m. The associated electronics allow measurements to be taken over a broad
range of turbulent conditions. All channels are fed into a controller board that sends the information to a transmitter.
The total instrumentation package including sensors, associated electronics, controller board, transmitter, and antenna
weighs only a few pounds, allowing the overall system to fall within the same flight regulations as a conventional
radiosonde. Data is received by telemetry and a GPS unit on the package aids in possible recovery. Very accurate
calibrations are required to obtain data that can be used to calculate spatial differences of turbulence. The complete
system is calibrated in a chamber covering the complete range of temperature anticipated.

The 50 MHz radar as shown in Figure 2 is located at Vandenberg AFB. It has fixed coaxial-collinear antennas at right
angles. Beams are directed 15° from the zenith at 45° and 135° azimuth, and one is vertical, permitting the three
components of the wind vector to be resolved. The antenna is about 150m in diameter and produces a one-way beam
width of 2.9°. Received power, from which C;, wind speed, and spectral width are derived, is observed for I min
along each beam. Since the three different beams are sampled consecutively, a full profile is obtained every three
minutes. Pulse coding applied to the 8-lls transmitted produces 1-lls nominal pulse lengths to give 150-m resolution
along each beam axis. In normal operation, 112 range gates are used to sample from 3.22 -20 km in altitude. The
transmitted power of250 kW leads to a power aperture product of Ix I08 W m2

•

The site at Vandenberg AFB is established and has considerable facilities (including a balloon launch facility) and
equipment required for the efforts described here. The site has been recently upgraded as part of the Western Test



Range. and has six new boundary layer radars, six sodars. and 30 instrumented towers that will also provide data for this
effort 10 future efforts. Excellent ground receiving stations exist also.

5. RESULTS

Figure 3 shows the C; hourly profiles from each oblique beam and time-height displays for June 14,2007 observed by
the 50 MHz radar at Vandenberg Air Force Base. The enhanced turbulence at the top of the planetary boundary layer in
the region above 4 km AGL is seen and the structure above about 12.5 km is clearly displayed. The following three
figures are displayed in the same manner as Figure 3 and all are results derived from the radar measurements. Figure 4
displays the eddy dissipation rate and inner scale calculated by the relationship discussed in the Methodology section.
The turbulent kinetic energy and standard deviation of vertical velocity (a proxy indicator of gravity waves) is shown in
Figure 5. Both zonal and meridional wind speeds as well as horizontal wind speed and direction are shown in Figure 6.

Figure 7 shows the profile of C; derived from the C; values obtained with the fine wire probe. Since examination of
the slopes of the PSDs and structure functions showed that very few examples had slopes representative of Kolmogorov
turbulence, the units are not specified. In all, 57 segments were used with slopes varying sporadically. Of interest is
that an average of these 57 slopes is 1.596, close to 1.667 as expected for Kolmogorov turbulence. It is therefore
suggested that the effective sampling of the radar is Kolmogorov since the radar volume is considerably greater than
that sampled with the fine wire probe and many slopes are therefore averaged in the radar sensed volume. Also. one
minute is observed on each radar beam. Of interest is the propagation effect of a narrow laser beam traversing the
variable conditions as opposed to uniform slopes as addressed in a companion paper in this conference.22

Figure 8 shows a time series of temperature measurements taken with the fine wire probe through alSO m height
increment to match the range resolution of the 50 MHz radar. This example is typical of other height increments and
displays high speed fluctuations on a lower frequency panern. The total range is only about 0.06 K over this height
interval.

The radar-obtained C; profiles seen in Figure 3 show only modest agreement to the profile derived from the
temperature measurements shown in Figure 7. The lower altitude region shows bener agreement than the higher region
even considering that the radar will sense somewhat higher in the lower region due to the water vapor contribution as
displayed in Equations 4 and 5. The PSD of the high speed temperature measurements just above the fog layer (0.449
km) is shown in Figure 9 and the PSD at 19.451 km is displayed in Figure 10. The contrast is seen in the lower
wavenumber region where the higher altitude example shows a large decrease in values under the "fit" line-different
from the low altitude example. Proper interpretation of these effects is a work in progress.

6. SUMMARY AND CONCLUSIONS

The preliminary results shown here clearly demonstrate that other phenomena besides "classical" turbulence can
produce refractivity turbulence in the atmosphere. Single profiles alone as shown here with the fine wire measurements
are useful in identifying such conditions but a time-height record as can be obtained with radar observations is needed to
show the evolution ofthe features through the whole life cycle. Radar observations can clearly show layering of
turbulence, gravity wave activity. and time varying events such as Kelvin-Helmholtz instabilities. Radar measurements
along with in situ measurements such as described here are essential for a full understanding of the problem. The
ensemble ofobservations can then be used to assess the impact on optical propagation.

7. FUTURE PLANNED RESEARCH

This paper presents some preliminary results and new methodology to examine several issues of optical turbulence.
One is to evaluate the impact of real atmospheric turbulent conditions on laser beams by considering the non-classical
effects of turbulence. High-resolution measurements will be used and incorporated into theoretical beam calculations.
The Mutual Coherence Function is one possible approach for many of the calculations. particularly using different



spectra. Other specific objectives are to examine the relationship between mechanical turbulence and optical turbulence
(since this is of interest for some modeling approaches), to investigate radar scattering mechanisms including the
"filling factor" ("F" in equation 4) problem, to examine the effect of variable C; and /0 on extracting turbulent
parameters over long paths, and to study the turbulent characteristics of the marine boundary layer with associated
littoral zone. From simultaneous VHF radar and balloon-ring system observations, the refractive index structure
parameter ( C; ), the eddy dissipation rate (e), the inner scale (It> ), and the outer scale ( Lo ) will be evaluated. Special
attention will be taken for evaluating turbulence spectra and intermittency within, at the edge, and outside of turbulent
layers. The observations will be analyzed to examine if the atmosphere is isotropic for the scales of interest for lasers as
well as determining if the turbulence is Kolmogorov under various atmospheric conditions. This effort provides an
observation platform that will ultimately lead to the development and validation of conceptual, statistical, physical
models.
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Figure I. PhOlograph sho\\ ing the balloon-ring platfonn in
flight. A parachute is juSt belo\\' the balloon.

Figure 2. Photograph showing the phased array antenna of the 50 ~'II-Iz md:IT m Vandenberg Air Force Ihse. The: 3r1h,:nna
is [50 In in diameter and the pow.:r :Jpcrlurc product is 1:1:10' Wm:.
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J••
Issues discussed:

Outline

1) The effects of real turbulent conditions on laser beam propagation need to
be assessed. These include the non "classical" effects due to non­
Kolmogorov, anisotropic, non-stationary, and non-homogeneous turbulence.

2) Various measurement systems need to be compared and validated. This
includes in-situ fine wire sensor measurements and Doppler radar
observations.

3) The "volume filling" radar problem needs to be addressed.

4) The relationship of mechanical and optical turbulence needs to be
examined.
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Temperature, Density, Pressure, and Brunt Vaisala Profiles
•

for June 14,2007 at Vandenberg Air Force Base
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Inner Scale and Eddy Dissipation Profiles for June 14, 2007
at Vandenberg AFB
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Turbulent Kinetic Energy and Standard Deviation of Vertical
Velocity for June 14,2007 at Vandenberg AFB
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Wind Speed and Direction for June 14, 2007 at
Vandenberg, AFB
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Refractivity Turbulence for June 14, 2007 at
Vandenberg AFB
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AFRL: Full Flight Envelope

§.vstem stability check

, -launch forces

-Balloon inflation pressure

-parachute deployment

-Pressure sensitive cut-down



Refractivity Turbulence Profile for June 14, 2007 From Fine
Wire Measurements at Vandenberg, AFB
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"Volume Filling" & £ vs. Cn2
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Temperature Measurements in a Height Increlnent Equivalent
to a Radar Range Gate
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PSD afFine Wire Temperature Measurements on June 14,
2007 •

Altitude = 0.449 km, Slope = -1.594, Cr' = 1.558e-003
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PSD afFine Wire Temperature Measurements on June 14,
2007 •

Altitude = 19.451 km, Slope = -1.844, Cr' = 8.337e-003
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BEAM QUALITY AND IRRADIANCE ON TARGET

Mutual Coherence Function:
Ak ?W Z p-

f(p,z) = W

o
exp -s(p,z)- 4z

d(p, z)

2

where

Kolmogorov
spectrum

Von Karman
spectrum

exp(-K 2 IK 2
)

<t> (K) = 0.033 c 2
111

II n(22)11/6
K +K

o

Andrews
spectrum

? ?exp(-K- IK-)
<t> (K) = 0.033 c2

In

II II (K 2 +K 2 )11/6
o

X[l + 1.8(K! K e) - 2.5(K! K
e

)7/6 ]
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Summary

Methodology has been developed for additional
experilnents to address several issues related to optical
turbulence. Measurelnent systems to be used include a
balloon-ring platform system and a 50 MHz radar.
Specific issues include: effects of path variability of Cn2
and inner scale on turbulent derived quantities over long
paths, effects of "non-classical" turbulence on
propagation including beam quality and irradiance on
target, the "volulne filling" radar problem, relationship
between mechanical and optical turbulence, and
improved understanding of radar scattering Inechanisms.
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